THE CHEMISTRY OF A HANGOVER

For most of us, a hangover is the price to pay for a night of drinking. However, we still don’t know what exactly it is that causes them. In this graphic, we look at what happens to alcohol in your body, and some of the prime suspects for causing your hangover.

WHAT HAPPENS TO ALCOHOL IN YOUR BODY?

In the liver, ethanol is converted to acetaldehyde by the alcohol dehydrogenase enzyme, and then subsequently converted into acetate by the aldehyde dehydrogenase enzyme. Acetate can be broken down into carbon dioxide and water, then eliminated from the body. On average, the liver can break down alcohol at the rate of one unit (8 grams or 10 millilitres of pure alcohol) every hour.

DEHYDRATION

Alcohol has a diuretic effect on the body, increasing urine production. Alcohol-induced dehydration has been suggested as a cause for some hangover symptoms, but research suggests it isn’t a major factor. During alcohol intoxication, release of the anti-diuretic hormone (ADH) vasopressin is decreased, resulting in increased urination.

ACETALDEHYDE

Acetaldehyde is rapidly converted into acetate in the liver. Acetaldehyde, produced by the breakdown of alcohol, has toxic effects that could cause hangover symptoms. However, acetaldehyde concentration doesn’t significantly correlate with hangover severity. Disulfiram (above), a drug to support treatment of alcoholism, works by inhibiting the breakdown of acetaldehyde, producing unpleasant, hangover-like symptoms.

CONGENERS

Methanol is found in very small amounts in many alcoholic drinks. Congeners are compounds other than ethanol in drinks. These include alcohols such as methanol, which breaks down into toxic formaldehyde and formic acid. Congeners can increase hangover severity.

IMMUNE SYSTEM

Cytokines are small proteins released by cells which affect other cells. They play an important role in the immune system. Alcohol causes changes in cytokine concentrations in the immune system. Studies have shown the effects caused by some cytokines are very similar to those of a hangover, strongly supporting their role. In particular, IL-12 & IFN-γ concentration changes show significant correlations with hangover severity.

© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem

This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.