Eggs are one of the most versatile kitchen ingredients; there are numerous ways of cooking them on their own, and they can also be used to help create a range of other foods. Here, we take a look at what they’re made of, and how they change during cooking.

Egg Colour & Composition

The yellow colour of egg yolks is due to the presence of the carotenoid pigments lutein and zeaxanthin. Artificial additives aren’t permitted, but additives such as beta-carotene and marigold petals can be added to chicken feed to influence the yolk’s colour.

Egg Shell Composition

Calcium carbonate is the main component of eggshells. Nanoparticles of calcium carbonate are arranged into ordered crystals by proteins, forming a calcite shell. The colour of the eggshell comes from porphyrin pigments on the shell’s surface.

Egg White Proteins

Ovalbumin: 54%
Conalbumin: 12%
Ovomucin: 2%
Others: 32%

About 90% of the egg white is water; the rest of its mass is mostly protein. Ovalbumin’s purpose is thought to be nutrition for the developing chick; Ovomucin helps thicken the egg white; and conalbumin binds iron & guards against infection.

Cooking Eggs

Egg proteins begin in the raw egg as folded chains, but as they are heated they begin to denature and unfold. Interactions between the unfolded proteins create a three-dimensional network, trapping the water and causing the egg to solidify.

Calcium carbonate: \(\text{Ca}^{2+} \cdot \text{O} \cdot \text{O}^- \)

Protoporphyrin IX

Brown pigment; the presence of the pigment oocyanin causes eggs to have a blue or green colouration.

Albumen pH

OF FRESHLY LAID EGG

7.6

AFTER SEVERAL DAYS OF STORAGE

9.2

Albumen pH increases as CO\(_2\) diffuses out through the shell. Albumen adheres more strongly to the shell at lower pH, making it harder to peel boiled eggs.