There are many different species of poisonous frogs. Where does their poison come from, and how do they avoid poisoning themselves?

POISONOUS FROGS

There are several families of poisonous frogs. The most well known are poison dart frogs, which are native to Central and South America. There are over 170 species of poison frogs, which vary in their toxicity.

DIFFERENT FROGS, DIFFERENT POISONS

Batrachotoxin is one of the most potent alkaloid poisons known, found at high levels in the three frog species above. The highest levels are found in the golden poison frog; it’s estimated that the average frog of this species contains enough batrachotoxin to kill 20,000 mice.

Over 800 alkaloids have been identified in various species of poison frogs. Any one species commonly contains a mixture of many of these compounds. More examples are shown below.

AVOIDING SELF-POISONING

Frog poisons can work in a number of ways. Batrachotoxin is a neurotoxin which works by binding irreversibly to sodium ion channels in nerve and muscle cells. This interferes with nerve signals to the muscles, resulting in paralysis and death.

Batrachotoxin is a neurotoxin which works by binding irreversibly to sodium ion channels in nerve and muscle cells. This interferes with nerve signals to the muscles, resulting in paralysis and death.

How do poisonous frogs that have batrachotoxin in their skin avoid poisoning themselves? Recent research has found that they are protected from the toxin by a single amino acid mutation in their version of the sodium ion channel protein.

For many years it was though that poison frogs synthesised poisonous alkaloid compounds themselves. It was later discovered that they derive their poisons from their diet of ants, mites, and termites.

Batrachotoxin is a neurotoxin which works by binding irreversibly to sodium ion channels in nerve and muscle cells. This interferes with nerve signals to the muscles, resulting in paralysis and death.

How do poisonous frogs that have batrachotoxin in their skin avoid poisoning themselves? Recent research has found that they are protected from the toxin by a single amino acid mutation in their version of the sodium ion channel protein.

For many years it was though that poison frogs synthesised poisonous alkaloid compounds themselves. It was later discovered that they derive their poisons from their diet of ants, mites, and termites.

Batrachotoxin is a neurotoxin which works by binding irreversibly to sodium ion channels in nerve and muscle cells. This interferes with nerve signals to the muscles, resulting in paralysis and death.

How do poisonous frogs that have batrachotoxin in their skin avoid poisoning themselves? Recent research has found that they are protected from the toxin by a single amino acid mutation in their version of the sodium ion channel protein.

For many years it was though that poison frogs synthesised poisonous alkaloid compounds themselves. It was later discovered that they derive their poisons from their diet of ants, mites, and termites.

Batrachotoxin is a neurotoxin which works by binding irreversibly to sodium ion channels in nerve and muscle cells. This interferes with nerve signals to the muscles, resulting in paralysis and death.

How do poisonous frogs that have batrachotoxin in their skin avoid poisoning themselves? Recent research has found that they are protected from the toxin by a single amino acid mutation in their version of the sodium ion channel protein.

For many years it was though that poison frogs synthesized poisonous alkaloid compounds themselves. It was later discovered that they derive their poisons from their diet of ants, mites, and termites.

Batrachotoxin is a neurotoxin which works by binding irreversibly to sodium ion channels in nerve and muscle cells. This interferes with nerve signals to the muscles, resulting in paralysis and death.

How do poisonous frogs that have batrachotoxin in their skin avoid poisoning themselves? Recent research has found that they are protected from the toxin by a single amino acid mutation in their version of the sodium ion channel protein.